A Neuro-Fuzzy Framework for Predicting Ash Properties in Combustion Processes

نویسندگان

  • G. Castellano
  • M. Giovannini
چکیده

This paper describes a neuro-fuzzy modeling framework for predicting the properties of ashes originated from combustion processes for electric generation. The prediction problem is tackled by means of a neuro-fuzzy system in which a neural network and a fuzzy system are combined in a fused architecture, so that the structure and the parameters of the fuzzy rule base are determined via a two-phase learning of the neural network. The modeling framework is composed of two modeling strategies that enable development of both MIMO and MISO neuro-fuzzy models. Experimental results demonstrate that models derived by the proposed framework delivered satisfactory results in spite of the significant complexity of the considered problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Compressive Strength of Self compacting Concrete with Flyash and Rice Husk Ash using Adaptive Neuro-fuzzy Inference System

Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh proper...

متن کامل

Knowledge discovery by a neuro-fuzzy modeling framework

In this paper a neuro-fuzzy modeling framework is proposed, which is devoted to discover knowledge from data and represent it in the form of fuzzy rules. The core of the framework is a knowledge extraction procedure that is aimed to identify the structure and the parameters of a fuzzy rule base, through a two-phase learning of a neuro-fuzzy network. In order to obtain reliable and readable know...

متن کامل

EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...

متن کامل

Discovering Prediction Rules by a Neuro-fuzzy Modeling Framework

In this paper, we propose a neuro-fuzzy modeling framework to discover fuzzy rules and its application to predict chemical properties of ashes produced by thermo-electric generators. The framework is defined by several sequential steps in order to obtain a good predictive accuracy and the readability of the discovered fuzzy rules. First, a feature selection procedure is applied to the available...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004